273 research outputs found

    A Characterization of Infinite LSP Words

    Full text link
    G. Fici proved that a finite word has a minimal suffix automaton if and only if all its left special factors occur as prefixes. He called LSP all finite and infinite words having this latter property. We characterize here infinite LSP words in terms of SS-adicity. More precisely we provide a finite set of morphisms SS and an automaton A{\cal A} such that an infinite word is LSP if and only if it is SS-adic and all its directive words are recognizable by A{\cal A}

    A Coloring Problem for Sturmian and Episturmian Words

    Full text link
    We consider the following open question in the spirit of Ramsey theory: Given an aperiodic infinite word ww, does there exist a finite coloring of its factors such that no factorization of ww is monochromatic? We show that such a coloring always exists whenever ww is a Sturmian word or a standard episturmian word

    k-Spectra of weakly-c-Balanced Words

    Full text link
    A word uu is a scattered factor of ww if uu can be obtained from ww by deleting some of its letters. That is, there exist the (potentially empty) words u1,u2,...,unu_1,u_2,..., u_n, and v0,v1,..,vnv_0,v_1,..,v_n such that u=u1u2...unu = u_1u_2...u_n and w=v0u1v1u2v2...unvnw = v_0u_1v_1u_2v_2...u_nv_n. We consider the set of length-kk scattered factors of a given word w, called here kk-spectrum and denoted \ScatFact_k(w). We prove a series of properties of the sets \ScatFact_k(w) for binary strictly balanced and, respectively, cc-balanced words ww, i.e., words over a two-letter alphabet where the number of occurrences of each letter is the same, or, respectively, one letter has cc-more occurrences than the other. In particular, we consider the question which cardinalities n= |\ScatFact_k(w)| are obtainable, for a positive integer kk, when ww is either a strictly balanced binary word of length 2k2k, or a cc-balanced binary word of length 2kc2k-c. We also consider the problem of reconstructing words from their kk-spectra

    Avoidability of formulas with two variables

    Full text link
    In combinatorics on words, a word ww over an alphabet Σ\Sigma is said to avoid a pattern pp over an alphabet Δ\Delta of variables if there is no factor ff of ww such that f=h(p)f=h(p) where h:ΔΣh:\Delta^*\to\Sigma^* is a non-erasing morphism. A pattern pp is said to be kk-avoidable if there exists an infinite word over a kk-letter alphabet that avoids pp. We consider the patterns such that at most two variables appear at least twice, or equivalently, the formulas with at most two variables. For each such formula, we determine whether it is 22-avoidable, and if it is 22-avoidable, we determine whether it is avoided by exponentially many binary words

    Pairwise Well-Formed Modes and Transformations

    Full text link
    One of the most significant attitudinal shifts in the history of music occurred in the Renaissance, when an emerging triadic consciousness moved musicians towards a new scalar formation that placed major thirds on a par with perfect fifths. In this paper we revisit the confrontation between the two idealized scalar and modal conceptions, that of the ancient and medieval world and that of the early modern world, associated especially with Zarlino. We do this at an abstract level, in the language of algebraic combinatorics on words. In scale theory the juxtaposition is between well-formed and pairwise well-formed scales and modes, expressed in terms of Christoffel words or standard words and their conjugates, and the special Sturmian morphisms that generate them. Pairwise well-formed scales are encoded by words over a three-letter alphabet, and in our generalization we introduce special positive automorphisms of F3F3, the free group over three letters.Comment: 12 pages, 3 figures, paper presented at the MCM2017 at UNAM in Mexico City on June 27, 2017, keywords: pairwise well-formed scales and modes, well-formed scales and modes, well-formed words, Christoffel words, standard words, central words, algebraic combinatorics on words, special Sturmian morphism

    Nivat's conjecture holds for sums of two periodic configurations

    Full text link
    Nivat's conjecture is a long-standing open combinatorial problem. It concerns two-dimensional configurations, that is, maps Z2A\mathbb Z^2 \rightarrow \mathcal A where A\mathcal A is a finite set of symbols. Such configurations are often understood as colorings of a two-dimensional square grid. Let Pc(m,n)P_c(m,n) denote the number of distinct m×nm \times n block patterns occurring in a configuration cc. Configurations satisfying Pc(m,n)mnP_c(m,n) \leq mn for some m,nNm,n \in \mathbb N are said to have low rectangular complexity. Nivat conjectured that such configurations are necessarily periodic. Recently, Kari and the author showed that low complexity configurations can be decomposed into a sum of periodic configurations. In this paper we show that if there are at most two components, Nivat's conjecture holds. As a corollary we obtain an alternative proof of a result of Cyr and Kra: If there exist m,nNm,n \in \mathbb N such that Pc(m,n)mn/2P_c(m,n) \leq mn/2, then cc is periodic. The technique used in this paper combines the algebraic approach of Kari and the author with balanced sets of Cyr and Kra.Comment: Accepted for SOFSEM 2018. This version includes an appendix with proofs. 12 pages + references + appendi

    On the maximal sum of exponents of runs in a string

    Get PDF
    A run is an inclusion maximal occurrence in a string (as a subinterval) of a repetition vv with a period pp such that 2pv2p \le |v|. The exponent of a run is defined as v/p|v|/p and is 2\ge 2. We show new bounds on the maximal sum of exponents of runs in a string of length nn. Our upper bound of 4.1n4.1n is better than the best previously known proven bound of 5.6n5.6n by Crochemore & Ilie (2008). The lower bound of 2.035n2.035n, obtained using a family of binary words, contradicts the conjecture of Kolpakov & Kucherov (1999) that the maximal sum of exponents of runs in a string of length nn is smaller than 2n2nComment: 7 pages, 1 figur

    Enumerating Abelian Returns to Prefixes of Sturmian Words

    Full text link
    We follow the works of Puzynina and Zamboni, and Rigo et al. on abelian returns in Sturmian words. We determine the cardinality of the set APRu\mathcal{APR}_u of abelian returns of all prefixes of a Sturmian word uu in terms of the coefficients of the continued fraction of the slope, dependingly on the intercept. We provide a simple algorithm for finding the set APRu\mathcal{APR}_u and we determine it for the characteristic Sturmian words.Comment: 19page

    Palindromic complexity of trees

    Full text link
    We consider finite trees with edges labeled by letters on a finite alphabet Σ\varSigma. Each pair of nodes defines a unique labeled path whose trace is a word of the free monoid Σ\varSigma^*. The set of all such words defines the language of the tree. In this paper, we investigate the palindromic complexity of trees and provide hints for an upper bound on the number of distinct palindromes in the language of a tree.Comment: Submitted to the conference DLT201

    Detecting One-variable Patterns

    Full text link
    Given a pattern p=s1x1s2x2sr1xr1srp = s_1x_1s_2x_2\cdots s_{r-1}x_{r-1}s_r such that x1,x2,,xr1{x,x}x_1,x_2,\ldots,x_{r-1}\in\{x,\overset{{}_{\leftarrow}}{x}\}, where xx is a variable and x\overset{{}_{\leftarrow}}{x} its reversal, and s1,s2,,srs_1,s_2,\ldots,s_r are strings that contain no variables, we describe an algorithm that constructs in O(rn)O(rn) time a compact representation of all PP instances of pp in an input string of length nn over a polynomially bounded integer alphabet, so that one can report those instances in O(P)O(P) time.Comment: 16 pages (+13 pages of Appendix), 4 figures, accepted to SPIRE 201
    corecore